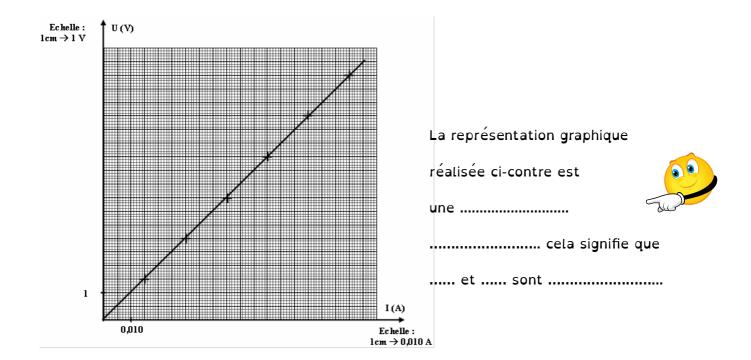

I - La loi d'Ohm

Généralement, les mesures (d'abord consignées dans un tableau) permettent de ce qui permet de visualiser la caractéristique du dipôle.



Sur ce graphique, on place :

- la tension en, l'axe
- l'intensité en, l'axe

Pour les dipôles appelés conducteurs ohmiques ou plus communément résistances, on obtient la caractéristique suivante :

				4507 24g	
Je suis Georg Simon Ohm.					1
Voici la loi qui porte mon nom, la	loi d'Ohm :			1	16.
La aux bornes d'une «	résistance	» est	~		
à l'	du courant	qui la			
traverse.					
Cette loi se traduit mathémati	guoment.)	20	
Cette tor se traduit mathemati	quement:		J		
		I : Intensi	té qui traverse	du dipôle en e le dipôle en e en	
II – La puissance électrique :					
La puissance, exprimée e	en (d	e symbole) indiquée	sur un appareil	
est sa puissance	:				
Ex :		à Carre			
Lampe à incandescence : De 3	0 à 100 W			on 3 fois moins po basse-consomm	
Appareils domestiques:			Lampe	. 04330-001130111111	GEIOII
Téléviseur Réfrigérateur	Robot	Fer à	Lave-	Lave-vaisselle	

Téléviseur	Téléviseur Réfrigérateur		Fer à	Lave-	Lave-vaisselle	
Televiseur	Kerrigerateur	ménager	repasser	linge	Lave-vaisseile	
80 W	200 W	400 W	800 W	2200 W	2500 W	

Pour un dipôle ohmique (appareil éclairant ou chauffant):

 $P = \times$ Ou I = --- U : tension efficace (en V) <math>I : intensit'e efficace (en A)

III – La mesure de l'énergie électrique:

L'unité légale de l'énergie est le (.....).

L'unité couramment utilisée est le (......). C'est avec cette unité que le compteur d'énergie électrique indique l'énergie aux appareils électriques branchés sur le

$$1 \text{ kWh} = 3,6.10^6 \text{ J}$$

Dans le langage courant, on parle de consommation d'énergie.

En fait, il faut parler de conversion d'énergie car l'énergie ne disparait pas

IV - Puissance et énergie électrique :

 $E = ... \times ...$ E : énergie en joule (J) en kilowattheure (kWh)

P: puissance en watt (W) ou en kilowatt (kW)

t : durée en seconde (s) en heure (h)

Une énergie de un joule est l'énergie transférée à un appareil de puissance 1W pendant 1s.

De même, une énergie de un kilowattheure est l'énergie transférée à un appareil de puissance 1kW pendant 1h.